1	Q.	Reference: Public Utilities Board Muskrat Falls Review, Nalcor Exhibit 92, DC1070
2		Preliminary Meteorological Load Review, Appendix D, page D-2.
3		"Topographical effects should be added to the basic meteorological loads taking
4		into account statistical variations within each climatic region, which is individually
5		determined from general climate and geographical features."
6		Does Nalcor/Hydro agree that topographical amplification factors to be applied to
7		1:500 year return period climatic loads would be different than the factors applied
8		to 1:50 year return period climatic loads, in order to have a true 1:500 year return
9		period design?
10		
11		
12	A.	No, Hydro does not agree that the topographical amplification factor for a 500-year
13		return period load would be different than for a 50-year return period load.
14		CAN/CSA C22.3 No 60826 states:
15		
16		The values given in Figures CA.10 and CA.11 represent point
17		loadings (i.e., the amount of ice thickness that would have been
18		measured in the reference stations during the specified storm
19		event). However, during an icing storm, real or simulated, at a
20		point, it is unlikely that a selected point will see the maximum icing
21		intensity of the particular storm, and there will be other locations
22		where significantly higher icing can occur. Consequently, lines
23		designed for a given service area can require values of maximum ice
24		thickness to be predicted for the area. In the absence of relevant
25		local data, it is recommended that the values of Figures CA.10 and

CA.11 be increased by 30% (spatial factor $S_a = 1.3$).

26

NP-NLH-015

Island Interconnected System Supply Issues and Power Outages

Page 2 of 2

- 1 Factors to convert from 50-year return periods to other design return
- periods are also provided in CAN/CSA C22.3 No. 60826, but the standard
- does not provide for the application of alternate topography spatial factors.