1	Q.	Reference: Assessment of Labrador Island Transmission Link (LIL) Reliability in Consideration
2		of Climatological Loads, March 10, 2021 (Haldar Report) by Dr. Asim Haldar, Ph.D., P. Eng.
3		page 59, lines 1665-1668.
4		What are the implications for the reliability of the LIL that it does not meet industry best
5		practice that the structural support system should fail first compared to the cable system?
6		
7		
8	Α.	The following response has been provided by Haldar and Associates.
9		CSA 60826 requires a prescribed sequence of failure be maintained should the line fail. For an
10		extreme event, it is important that key components of an overhead line fail in a certain
11		sequence; in this context, conductor/shield wire system including hardware part ("wire support
12		system" in Haldar Report) should be the last component to fail because a loss of "wire support
13		system" component will release significant energy and introduce a "shock load" (dynamic
14		impact load) into the remaining components in the system. Depending on the components'
15		residual (reserved) strengths to withstand these large dynamic impact loads, the failure zone
16		could propagate well beyond the location of the initial failure. It has been reported during the
17		1998 Quebec storm that a 735 kV line lost as many as 80 self-supported steel lattice towers in
18		one longitudinal cascade situation in three different sections of the line. Therefore, any
19		triggering event that could initiate a failure in the "wire support system" component should be
20		avoided completely. However, recent advances in numerical modelling can provide realistic
21		answers in determining the expected cascade zone should the line is exposed to probable
22		cascade failure due to loss of an optical ground wire or a phase conductor. ^{1,2}

¹ Haldar, Asim, Veitch, Maria, Andrews, Trevor and Tucker, Kyle 2010 Numerical Modeling of a Transmission Line Cascade with Load Reduction Device, Proc., CIGRE SCB2, Paper # B2-304, August 27-30, Paris, France.

² Haldar, Asim 2018 Optimum Placement of Anti-Cascade Structures – A Probabilistic Framework, Report CEATI TR143700-3395.

1 Newfoundland and Labrador Hydro provides the following additional information.

As outlined by Haldar and Associates above, this could potentially result in a multi tower failure 2 3 versus a single tower failure, resulting in increased restoration time. However, this would be dependent upon a number of factors including reserve capacity in the towers, landscape, 4 loading, etc. As seen during the winter 2021, a cable break was experienced but did not result in 5 6 any complete tower failures. To mitigate and limit risk associated with multi-structure failure 7 propagation, the Labrador-Island Link has been designed with anti-cascade structures in accordance with CSA guidelines. In addition, the cable system will withstand loading in excess of 8 9 design limits before a mechanical failure occurs under ultimate limit states and therefore the loading would have to surpass local design criteria before a mechanical failure of the cable is 10 11 experienced.