1	Q.	Reference Avalon Capacity Study, page 7:
2		The base case assumes the ML frequency controller is available as import capacity permits;
3		please:
4		
5		a. Identify how much import capacity this requires.
6		
7		b. Whether the ML would be able to deliver more than 300 MW if the frequency on the
8		IIS were to drop below the frequency range.
9		
10		
11	Α.	a. The Maritime Link frequency controller is activated for frequency support for the Island
12		Interconnected System to the extent that the capacity is available on the Maritime Link.
13		The current amount of response that is available for Island frequency support is 150 MW.
14		
15		b. The maximum transfer limit of the Maritime Link (from Woodbine, Nova Scotia to
16		Bottom Brook, Newfoundland and Labrador) is 325 MW, as measured at Woodbine
17		Terminal Station. ¹ The combined capacity of imports to the Island Interconnected System
18		and the capacity required by the Maritime Link frequency controller (150 MW) cannot
19		exceed this value in order to gain full benefit of the frequency controller action. If there is
20		insufficient capacity for the Maritime Link frequency controller to operate at its specified
21		limit, it will respond at a reduced capacity. Under normal operation to date, on-Island
22		generator and Labrador-Island Link ("LIL") loading limits are put in place to avoid the risk of
23		under frequency load shedding. In the event of an emergency scenario such as a LIL bipole
24		outage during periods of higher flows, such operational limits may not be practical and
25		there may be an increased risk of under frequency load shedding. However, operational
26		studies are currently being performed that will consider runbacks on the Maritime Link
27		following a significant loss of supply to the Island system. These coordinated runbacks
28		would improve system frequency response following the unlikely event of a LIL bipole trip

¹ A limit of 300 MW is currently in place at Bottom Brook to account for Maritime Link losses.

Page 2 of 2

- 1 and therefore reduce the level of under frequency load shedding required on the Island
- 2 Interconnected System.