1	Q.	Reference: Structural Capacity Assessment of the Labrador Island Transmission Link (LITL),
2		<i>EFLA</i> , April 28, 2020, page 51.
3		"The "Strain Margin" type test [12] indicate that the optical fibres permanent attenuation in
4		signal was below the limits specified in IEEE Std. 1138-2009 when tested up to the RTS."
5		Please provide a detailed technical explanation of how the OPGW optical fibres are able to
6		withstand permanent elongation/attenuation and continue to function appropriately when
7		subjected to ice loads in multiple spans at 109% RTS.
8		
9		
10	A.	During EFLA Consulting Engineers' ("EFLA") analysis, higher ice loads than that of the original
11		design of the Labrador-Island Link ("LIL") were placed on the line components to determine the
12		structural capacity of the LIL. It was determined that when using EFLA's chosen CSA 1:150 loads
13		the optical ground wire ("OPGW") is stressed to 109% of its Rated Tensile Strength. From
14		reviewing the design documentation, EFLA has concluded that this loading will elongate the
15		OPGW conductor but will not result in a break to the cable. From a communication perspective
16		it is not known if the fibers within the OPGW will withstand such stresses; however, there are
17		redundant communications systems in place which will help to ensure power delivery will
18		remain unaffected. Please refer to Newfoundland and Labrador Hydro's response to NP-NLH-
19		027 for a description of OPGW fiber failures.