1Q.Please describe Newfoundland Power's distribution system planning policy,2criterion and process. Include in the response the numbers and titles of personnel3involved with the distribution planning process.

4 5 6

7

8

9 10

11

22 23

24 25

26 27

28 29

30

31

32

34

A.

1.0 Policy and Process

Distribution planning activities at Newfoundland Power ("the Company") involve two primary functions; (i) capital planning and (ii) operational planning.

Capital Planning

Capital planning activities involve the annual completion of distribution system studies 12 13 and load forecasts to identify technical constraints on the distribution system that may 14 require capital expenditure. These distribution planning studies and load forecasts 15 provide input into the Company's five-year capital plan. During the development of the Company's annual capital budget application, identified projects are analyzed for 16 17 technical merit, alternatives, least cost economics and budgeting. These planning activities are the responsibility of the Distribution Engineering section, with involvement 18 19 and input as required from the regional engineering groups. These studies are completed 20 by the Supervisor, Distribution Engineering and Standards under the direction and 21 approval of the Superintendent of Engineering.

Operational Planning

Operational distribution planning activities involve daily analysis of the distribution system to react to changes or additions to the distribution system on a regional level. These activities typically include new load analysis, outage investigations and temporary system condition changes. These distribution planning activities are the responsibility of each regional engineering group and involve the Superintendent of Regional Engineering, Engineering Supervisors and Engineering Planning Technologists in each of the Company's three operating regions.

33 2.0 Criteria

Newfoundland Power's distribution planning criteria align with the Distribution
Planner's Manual published by the Canadian Electricity Association ("CEA") and consist
of the following system constraint factors; (i) ampacity, (ii) short circuit capacity, (iii)
voltage and power quality and (iv) reliability.

$\frac{1}{2}$	Ampacity
2 3 4	Ampacities, or thermal loading limits, are determined for the three major system components:
5	• Transformers (substation transformers, voltage regulators and step-downs)
6 7	• Conductor and Cable (bare aerial conductors, aerial cables and underground cable)
8	• Breakers and Switches (breakers, reclosers, air switches and underground
9 10	switches)
11	Different philosophies are used to determine ampacity ratings for each group from which
12	a planning ampacity is derived. The planning ampacity is the maximum peak load
13	permitted on a system component during normal operating conditions. It is recognized
14	that under emergency or abnormal conditions, system components may be operated
15	above the planning ampacity.
16	
17	Short Circuit Capacity
18	The mentioner allocation of protection devices for a given fault level must be less then
19	the short circuit withstand capability of any system component exposed to that fault. To
20	address situations where it is determined that this is not the case, either equipment or
21	plant with greater short circuit withstand canability is installed, or the fault level is
23	reduced
24	
25	Voltage and Power Ouality
26	
27	Canadian Standards Association ("CSA") Standard C235 defines the preferred voltage
28	levels on a 120V base for normal and extreme operating conditions. For planning
29	purposes, action is to be initiated when voltage limits for normal operating conditions are
30	violated. CYMDIST distribution feeder modelling software is used for distribution
31	system voltage planning, and field measurements are obtained to confirm any inadequate
32	line voltages identified in the modelling software.
33	
34	Power quality issues such as voltage flicker, voltage unbalance, harmonics, and high
35	frequency noise are also analyzed and addressed as required when concerns are
36	identified.
37	
38 20	Kenadunty
39 40	The consistent application of Newfoundland Dewar's distribution planning activities and
40 71	processes halp to ansure its customers receive a cost offective uniform and high standard
41 12	of electrical service throughout the Company's service territory. Distribution planning
<i>Δ</i> 43	continuously monitors issues that could have a negative impact on service reliability
15	continuously monitors issues that could have a negative impact on service feliability.

$\frac{1}{2}$		Some of these issues are cold load pickup, adequate feeder sectionalizing, feeder backup and contingency plans, and fault isolation/fuse coordination
3		and contingency plans, and fault isolation fase coordination.
4	3.0	Technical Options and Alternatives
5		
6		The following is a list of some technical options and alternatives which are used as
7		components for developing distribution plans to address identified or forecast system
8		constraints:
9		
10		Reconfiguration using permanent load transfers
11		• Convert to a higher voltage
12		• Reconductor
13		Add voltage regulator
14		Add sectionalizing switch
15		Add capacitors
16		Add extra phases
17		Upgrade neutral conductor
18		• Upgrade insulation for salt contamination
19		• Upgrade underground cable
20		• Upgrade recloser to breaker
21		Add substation transformer
22		• Add feeder
23		Add substation