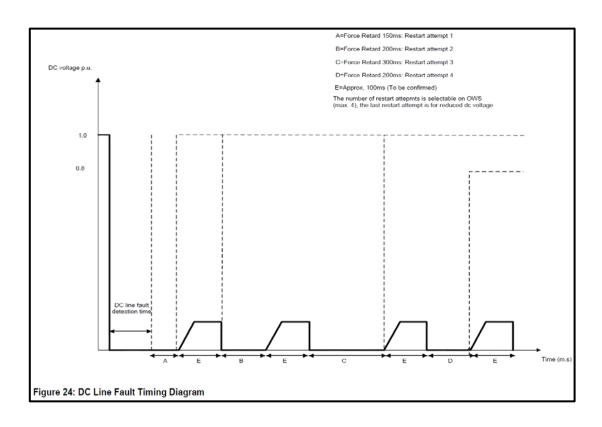
Page 1 of 4

1	Q.	None of the studies performed have considered the consequence of a restrike on		
2		the HVDC OHL, as may occasionally happen. The scenario would be as follows:		
3		1. Lightning strikes the HVDC OHL line (either just one pole or both poles –		
4		both should be studied)		
5		2. The HVDC converter stops the current flow, waits for the preset re-starting		
6		time, and then energise the line again.		
7		3. When the voltage reach say 90% the arc restrikes, and step 2 is repeated –		
8		normally with an increased de-ionization time.		
9		4. Either the 2nd attempt is successful or a further attempt starting with a		
10		lower dc voltage setting (say 80%) will be required.		
11		Please perform such a study both for monopolar and bipolar operation. The		
12		purpose of the study should be to identify the impact that these scenarios would		
13		have on the performance of the ISS, and if relevant to identify the additional inertia		
14		that would be required to protect the IIS.		
15				
16				
17	Α.	GE Grid has responded as follows:		
18		"Simulations of lightning strikes on AC and DC equipment are not		
19		performed for the following reasons:		
20		1. In the case of lightning striking a line outside the converter		
21		station, the effects of the current surge are absorbed by the line		
22		arrester and filter bus arrester in the same way that the		
23		connected line arresters absorb such surges; GE's converter		
24		station lightning arresters will be similar. In the case of back-		
25		flashover, only a fraction of the current surge enters the		
26		transmission line and the amplitude of the current in this branch		
27		is generally lower than the current rating of the arresters. In the		

Page 2 of 4

1	case of direct strike, this is the result of shielding failure and can
2	only occur for lightning strokes of current amplitude that is
3	generally lower than the current rating of the arresters.
4	2. In the case of lightning striking equipment within the converter
5	station, this can only occur as a result of shielding failure. The
6	shielding will be designed to limit the peak current of surges that
7	can penetrate the shielding substantially lower when compared
8	with the station equipment design. GE's previous experience
9	with systems operating at 400 kV and above is that filter bus
10	flashovers are more onerous than lightning strokes of this
11	magnitude; both for assessing filter equipment voltage
12	withstand levels and for assessing filter surge arrester protective
13	levels and energy absorption requirements. Arresters will be
14	located in close proximity to key equipment items in order to
15	provide the necessary protection."
16	
17	From the GE Grid Protection and Control Strategy document:
18	"Automatic restart attempts will only be enabled when fault occurs
19	on the overhead line. An operator facility will be provided to select
20	number of the restart attempts for overhead line faults. The
21	maximum restart attempt is 4 when the telecommunication is
22	available [4] ¹ .
23	1. The first restart attempt from the inception of the fault to the time when
24	power same as prefault DC power transfer of the Pole has been restored


¹ [4] "CD0501 Supply and Install Converters and Transition Compounds Performance Requirements", doc# ILK-SN-CD-8000-EL-DC-0001

	will occur in time E (Figure 24) time, including the time allowed for fault
	deionization.
2.	If the fault on the HVDC line persists after the first restart attempt, a
	further restart attempts will be performed using an adjustable de-
	ionisation period.
3.	The last selected restart attempt will be carried out with reduced DC
	voltage operation. For example: During the 1 pu DC Power in monopolar
	operation, when the DC voltage order is at 0.8 pu and the DC current
	shall be maintained at the prevailing DC current order which is 1 pu and
	hence the DC power will be 0.8 pu [5] ² . The DC line fault restart attempt
	will be inhibited if the next DC line fault attempt will exceed the
	maximum calculated energy of the neutral surge arrester. The cooling
	time of the energy dissipation for the neutral surge arrestor will be
	coordinated with the cooling curve of the neutral surge arrester. If the DC
	line fault reappears again after recovery from the last attempt of the DC
	line fault and the DC line fault is not inhibited, then the restart attempt
	will be carried out as per normal strategy.
4.	If the last attempt fails, the Pole will be blocked and tripped.
D	uring the bipolar operation and HV line fault is detected, the Pole
as	sociated to the HV line fault will start DC line fault sequence until the fault
is	extinguished. The other Pole will take up the power up to the overload
CC	pability until measure V_{dL} at the faulted pole recovers back to the pre-fault
D	C voltage order."
	3. 4. Di as is co

² [5] "Common – Main Scheme Parameter Design Report", doc# ILK-AS-SD-8000-EL-H13-0001-01

Page 4 of 4

1

2GE Grid will study examples of such dc fault scenarios for both monopole and bipole3operation during the Dynamic Performance Study (DPS) in EMTDC/PSCAD. The4results of the study will be provided in document, Common - PSCAD Dynamic5Performance Study Report; doc# ILK-AS-SD-8200-EL-H99-0013-01. Nalcor Energy6expects to receive first draft of report by June 30, 2016.