Page 1 of 4

1	Q.	Please confirm that the HVDC manufacturer has included the following studies, in
2		addition to the evaluation of fundamental frequency induction during normal
3		operating conditions:
4		Corona and Field effects
5		• Impact on the LIL of transient currents (e.g. from line to ground faults and
6		3ph faults) in the AC line.
7		• Impact on the AC line of transient currents (e.g. from line to ground faults
8		and pole to pole faults) in the HVDC OHL.
9		• The risk of contact between the AC OHL and the HVDC OHL, including
10		collapse of transmission towers.
11		• The impact of contact between the AC OHL and the HVDC OHL.
12		If the HVDC manufacturer did not perform these, has the evaluation been
13		performed by someone else? If not, please explain why not.
14		
15		
16	A.	The HVdc manufacturer (GE Grid) is responsible for completing technical
17		engineering studies to ensure the Labrador Island Link (LIL) is designed to and
18		meets all contractual specifications. GE Grid has provided the following:
19		1. Corona and Field Effects
20		a. GE Grid have studied coronal and field effects in study report titled
21		"Common – Converter Station Radiated Interference Design Report"
22		doc# ILK-AS-SD-8000-EL-H99-0008-01.
23		b. The GE Grid report covers the following:
24		i. RF noise at converter station boundary due to radiation from
25		thyristor valves.

1	ii. RF noise at converter station boundary due to conducted
2	interference on the ac side busbars.
3	iii. RF noise at converter station boundary due to conducted
4	interference on the HVdc side busbars.
5	iv. Corona noise calculation.
6	v. Combined radiated interference due to the above items.
7	
8	2. Impact on the LIL of transient currents (e.g. from line to ground faults and
9	3ph faults) in the AC line.
10	a. Ge Grid studied fundamental frequency induced currents and
11	provided Nalcor with the results in report titled, "Common –
12	Assessment of the Impact of AC Lines in Parallel with DC Lines Study
13	<i>Report",</i> doc# ILK-AS-SD-8000-EL-H99-0017-01.
14	b. GE Grid has not studied the impact of transient currents on the LIL
15	for ac transmission line faults. GE believes that transient studies will
16	not add value to the steady state analysis that was completed. The
17	HVdc OHL and ac transmission line crossings consist of very short
18	spans of conductor which would experience induced currents due to
19	induction. GE Grid suggests that the effect of induction over the
20	short span for such a short period of time (fault) is negligible.
21	
22	3. Impact on the AC line of transient currents (e.g. from line to ground faults
23	and pole to pole faults) in the HVDC OHL.
24	a. GE Grid has not studied the impact of transient currents on the ac
25	transmission lines due to faults on the HVdc OHL. Similarly, as
26	described in bullet 2b, the impact of transient induced currents of

Page 3 of 4

1	the relatively short crossings and short time during the fault is
2	negligible.
3	
4	4. The risk of contact between the AC OHL and the HVDC OHL, including
5	collapse of transmission towers.
6	a. LCMC and Nalcor have evaluated the risk of contact closely when it
7	comes to right-of-way proximity to NL Hydro's existing transmission
8	line corridors. Firstly the width of the HVdc corridor has been
9	designed using proper utility practice and standards to evaluate
10	conductor swing and clearance requirements to select the
11	appropriate right-of-way width. With respect to collapse of HVdc
12	transmission towers into adjacent corridors, Nalcor has evaluated
13	the typical failure methods and probability of failure for both guyed
14	and self-supported structure and determined:
15	i. Direct transverse line failure is very rare. Having primarily
16	guyed steel structures minimizes this risk, as guyed structures
17	are highly resilient to transverse failure, as evidence by no
18	failure of this type found.
19	ii. Design optimization has reduced this risk by limiting guy
20	tensions under transverse loads. With this limitation, the
21	tower will fail above the guy attachment point prior to wire
22	failure leaving adequate clearance to adjacent lines or the
23	tower restrained by the attached wires.
24	iii. Self Supported Towers failure under max transverse loads are
25	designed to fail at the tower waist which is well above ground
26	line and will not impact adjacent right-of-ways.

1	iv. The probability of a transverse failure of the HVdc line
2	interacting with the existing major HVac lines is lower than a
3	weather event that would take out the HVdc and any
4	adjacent HVac lines.
5	
6	5. The impact of contact between the AC OHL and the HVDC OHL.
7	a. In the event of contact between the ac transmission and HVdc
8	transmission both systems will activate the necessary protections to
9	clear the fault.
10	b. GE Grid is conducting a study to evaluate the ac system transient
11	stability of the interconnected transmission system post LIL
12	installation. Results of the study will be provided in document titled,
13	"Common-Transient Stability, Dynamic Multi Interaction, GSE and
14	FFTOV Study Report", doc# ILK-AS-SD-8200-EL-H99-0012-01. The
15	study will address the impact of faults on the ac transmission system
16	and HVdc transmission system; however combined ac and dc line
17	faults will not be in the scope of the study.