Page 1 of 2

1	Q.	Further to the response to NP-NLH-022, please explain why the ground wires have
2		not been designed for the same radial ice weight as the high voltage conductors.
3		Clearly, the ground wire would have lower mechanical strength than the high
4		voltage conductor, and would therefore be more susceptible to breaking, and
5		creating a short circuit, if the same radial ice weight accumulated on it as on the
6		high voltage conductors,
7		
8		In the response explain what the consequences would be of designing the ground
9		wire for the higher ice accumulation.
10		
11		
12	A.	The standard design practice outlined in CAN/CSA C22.3 No. 60726-10 is to design
13		for a given radial ice thickness on conductors and ground wires, not for a uniform
14		radial ice weight. For example, in the 50 mm zones, a 50 mm radial ice
15		accumulation was assumed on conductors, ground, and optical ground wires. The
16		exception noted in the standard is as follows:
17		
18		6.3.2 Ice data
19 20		The experience of some Canadian utilities is that in some locations
20		the ground wire (GW) accretes as much radial ice weight as the
22		larger-diameter conductors. This is partly due to the higher elevation
23		of the GW, the higher temperature of the phase conductor, and
24		possibly the comparative torsional stiffnesses. In such locations, it is
25		recommended to design the GW for the same linear unit weight of
26 27		ice as for the phase conductor.
28		There has been no evidence to support the exception noted in "6.3.2 Ice data" in
29		Newfoundland and Labrador and hence no justification to expend additional funds

•	Page 2 of 2
1	to further reinforce the ground wire and structures. Therefore, the general
2	provisions of the standard were followed.
3	
4	The ground wires, conductors, and structures are all designed to withstand their
5	respective meteorological loadings and any of these elements can be designed to
6	withstand increased loadings at additional cost.