Page 1 of 2

1	Q.	Reference: CAN/CSA-C22.3 No. 60826-10, Design Criteria of Overhead Transmission
2		Lines
3		The referenced standard CAN/CSA-C22.3 No. 60826-10 states in Section 7.3.3, on
4		page CSA/15:
5		"The following default (simplified) values can be used for lattice steel
6		towers in the majority of lines:
7		(a) suspension towers: $\phi_R = 0.9$ for intact loading cases and $[A] = 1.0$ for
8		failure loading cases; and
9		(b) angle and dead-end towers: intact ϕ_R = 0.8 and failed system ϕ_R = 0.9
10		where $\phi_{R} = \phi_N \phi_S \phi_Q \phi_C''$
11		Were strength (reduction) factors applied in the assessment of whether or not the
12		design of the Labrador Island Link met the CAN/CSA-C22.3 No. 60826-10 standard
13		for 1:150 and 1:500 year return periods? If so, please provide the strength
14		(reduction) factors. If not, why not?
15		
16		
17	Α.	Refer to Hydro's response to NP-NLH-038 for strength reduction factors. The same
18		strength reduction factors were applied in all loading scenarios, whether for design
19		or for structure utilization analysis. Strength reduction factors are not related to
20		return period.
21		
22		With respect to angle and deadend towers using failed system ϕ_R = 0.9, the Lower
23		Churchill Project (LCP) used 0.8 instead to ensure the required longitudinal capacity
24		for critical conductor tension related load cases. Angle Towers (C1, C2) were
25		designed for unbalanced loading condition with strength factor 0.8. The generic
26		longitudinal loading value derived from this condition is critical in designing

1	associated longitudinal lattice members. Deadend towers (example D1, D2 $\&$ E1)
2	were also designed with terminal condition (maximum loads on one side, and no
3	load on the other) with strength factor 0.8. This approach provides much higher
4	longitudinal capacity to the respective tower members to perform effectively as
5	anti-cascade towers.