Page 1 of 2

1	Q.	Reference: Response to Request for Information PUB-NLH-212
2		The response to Request for Information PUB-NLH-212 states in Attachment A, at
3		page 9 of 34:
4		"[CSA/CAN C-22.2 No. 60826:06] Figure CA.2 indicates a radial ice thickness of 40
5		mm at 10 m which translates into a 1:50 year return period ice thickness of 60 mm
6		(2.4 inches) at the line conductor elevation. The method for calculating increase
7		return period loads indicates a 1:100 year ice thickness of 66 mm, a 1:150 year ice
8		thickness of 69 mm (2.7 inches) and a 1:500 year ice thickness of 78 mm (3.1
9		inches)."
10		Page 10 of Attachment 1 to the Request for Information PUB-NLH-212 states:
11		"Investigations by NLH following the 1994 ice storm revealed that the original
12		design ice loads of 25 mm to 38 mm (1 to 1.5 inches) have a return period of
13		approximately one in ten years (1:10). Based upon the location of the transmission
14		line on the Avalon Peninsula the 1 in 25 year return period (1:25) was determined to
15		be between 48 mm and 66 mm (1.9 and 2.6 inches) of radial ice and the 1 in 50 year
16		return period (1:50) between 60 mm and 75 mm (2.35 and 3 inches) of radial ice.
17		Consequently reinforcement of the 230 kV steel lines on the Avalon Peninsula
18		between 1998 and 2002 utilizing a radial ice thickness of between 66 mm and 75
19		mm (2.6 and 3.0 inches) resulted in improved reliability of the 230 kV transmission
20		system with a return period between 1:25 and 1:50 years based upon line and
21		location.
22		Please explain in detail, how a 1:500 year return period for 78mm of ice developed
23		using the CAN/CSA-C22.3 No. 60826:06 standard can be considered appropriate on
24		the Avalon Peninsula when studies and measurements indicate that a 1:50 year
25		return period is only slightly less, between 60mm and 75mm.

1	Α.	Return period estimates presented in Hydro's response to NP-NLH-004 were based
2		on the latest available information and methodologies as presented in the 2010
3		edition of CAN/CSA-C22.3 No. 60826. The 1996 study which estimated ice loads on
4		the Avalon and Connaigre peninsulas was completed almost 15 years prior to the
5		release of the 2010 version of the CSA standard, and while Hydro is not in a position
6		to comment on the development of the CSA standard, the authors would have had
7		access to the results of the 1996 study when both the 2010 edition of the standard
8		and the preceding 2006 edition were released.